Low-medium temperature application of selective catalytic reduction denitration in cement flue gas through a pilot plant

نویسندگان

چکیده

Low-medium temperature application of selective catalytic reduction (SCR) denitration in cement flue gas was established and investigated this study. The 2000 h continuous operation shows the concentration NOx at outlet can be maintained 24 mg/Nm3 on average, while due to increase SO2 gas, increased 57.5 after long time operation. sulfur deposition is main reason for catalyst deactivation, still a big obstacle low-medium SCR gas. efficiency tested as fluctuated from 73.5% 86.2%, ammonia high 22.5–60.0 excessive injection non-catalytic (SNCR), serious escape problem SNCR, potential hybrid SNCR-SCR technology. In order maintain above 85.0%, gaseous hourly space velocity (GHSV) should not exceeded 2800 h?1, electrostatic precipitators (ESP) setting 60 kV relatively appropriate, kept 200 °C. concentrations toxic equivalent quantities (TEQs) PCDD/Fs congeners raised greatly reactor, indicating concerned during SCR, especially waste co-disposal processes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of NO Reduction Dynamical Model in Selective Non-catalytic Reduction Denitration System Based on Biomass

In recent years, studies on denitration by applying biomass reburning method has drawn the attention of many researchers due to the characteristics of low sulfur and nitrogen content, high volatile, high ash focal activity, zero CO2 net emissions, etc. Based on Chemkin software and selective non-catalytic reduction (SNCR) denitration chemical kinetic model, this paper conducted SNCR denitration...

متن کامل

Selective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase

The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...

متن کامل

Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to poor gypsum dewatering properties, may occur from time to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gyp...

متن کامل

Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...

متن کامل

Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

Selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemosphere

سال: 2021

ISSN: ['0045-6535', '1879-1298']

DOI: https://doi.org/10.1016/j.chemosphere.2021.130182